An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets

نویسندگان

  • Katherine E. Hill
  • Andrew D. Kelly
  • Marieke L. Kuijjer
  • William Barry
  • Ahmed Rattani
  • Cassandra C. Garbutt
  • Haydn Kissick
  • Katherine Janeway
  • Antonio Perez-Atayde
  • Jeffrey Goldsmith
  • Mark C. Gebhardt
  • Mohamed S. Arredouani
  • Greg Cote
  • Francis Hornicek
  • Edwin Choy
  • Zhenfeng Duan
  • John Quackenbush
  • Benjamin Haibe-Kains
  • Dimitrios Spentzos
چکیده

BACKGROUND A microRNA (miRNA) collection on the imprinted 14q32 MEG3 region has been associated with outcome in osteosarcoma. We assessed the clinical utility of this miRNA set and their association with methylation status. METHODS We integrated coding and non-coding RNA data from three independent annotated clinical osteosarcoma cohorts (n = 65, n = 27, and n = 25) and miRNA and methylation data from one in vitro (19 cell lines) and one clinical (NCI Therapeutically Applicable Research to Generate Effective Treatments (TARGET) osteosarcoma dataset, n = 80) dataset. We used time-dependent receiver operating characteristic (tdROC) analysis to evaluate the clinical value of candidate miRNA profiles and machine learning approaches to compare the coding and non-coding transcriptional programs of high- and low-risk osteosarcoma tumors and high- versus low-aggressiveness cell lines. In the cell line and TARGET datasets, we also studied the methylation patterns of the MEG3 imprinting control region on 14q32 and their association with miRNA expression and tumor aggressiveness. RESULTS In the tdROC analysis, miRNA sets on 14q32 showed strong discriminatory power for recurrence and survival in the three clinical datasets. High- or low-risk tumor classification was robust to using different microRNA sets or classification methods. Machine learning approaches showed that genome-wide miRNA profiles and miRNA regulatory networks were quite different between the two outcome groups and mRNA profiles categorized the samples in a manner concordant with the miRNAs, suggesting potential molecular subtypes. Further, miRNA expression patterns were reproducible in comparing high-aggressiveness versus low-aggressiveness cell lines. Methylation patterns in the MEG3 differentially methylated region (DMR) also distinguished high-aggressiveness from low-aggressiveness cell lines and were associated with expression of several 14q32 miRNAs in both the cell lines and the large TARGET clinical dataset. Within the limits of available CpG array coverage, we observed a potential methylation-sensitive regulation of the non-coding RNA cluster by CTCF, a known enhancer-blocking factor. CONCLUSIONS Loss of imprinting/methylation changes in the 14q32 non-coding region defines reproducible previously unrecognized osteosarcoma subtypes with distinct transcriptional programs and biologic and clinical behavior. Future studies will define the precise relationship between 14q32 imprinting, non-coding RNA expression, genomic enhancer binding, and tumor aggressiveness, with possible therapeutic implications for both early- and advanced-stage patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small non-coding RNAs and genomic imprinting.

Experimental and computer-assisted approaches have led to the identification of hundreds of imprinted small RNA genes, mainly clustered in two chromosomal domains (human 15q11-->q13 and 14q32 loci). The genes are only detected in placental mammals and belong to the C/D RNA and microRNA gene families. These are small non-coding RNAs involved in RNA-guided post-transcriptional RNA modifications a...

متن کامل

Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma

Osteosarcoma is the most common primary bone malignancy affecting children and adolescents. Although several genetic predisposing conditions have been associated with osteosarcoma, our understanding of its pathobiology is rather limited. Here we show that, first, an imprinting defect at human 14q32-locus is highly prevalent (87%) and specifically associated with osteosarcoma patients < 30 years...

متن کامل

Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster.

AIMS We conducted a genome-wide analysis to identify differentially methylated genes in atherosclerotic lesions. METHODS DNA methylation at promoters, exons and introns was identified by massive parallel sequencing. Gene expression was analysed by microarrays, qPCR, immunohistochemistry and western blots. RESULTS Globally, hypomethylation of chromosomal DNA predominates in atherosclerotic p...

متن کامل

MicroRNAs at the human 14q32 locus have prognostic significance in osteosarcoma

BACKGROUND Deregulation of microRNA (miRNA) transcript levels has been observed in many types of tumors including osteosarcoma. Molecular pathways regulated by differentially expressed miRNAs may contribute to the heterogeneous tumor behaviors observed in naturally occurring cancers. Thus, tumor-associated miRNA expression may provide informative biomarkers for disease outcome and metastatic po...

متن کامل

Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach.

The heterogeneous and chaotic nature of osteosarcoma has confounded accurate molecular classification, prognosis, and prediction for this tumor. The occurrence of spontaneous osteosarcoma is largely confined to humans and dogs. While the clinical features are remarkably similar in both species, the organization of dogs into defined breeds provides a more homogeneous genetic background that may ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017